36 research outputs found

    How can Health Technology Assessment support our response to public health emergencies?

    Get PDF
    Public health emergencies (PHEs), such as the COVID-19 crisis, are threats to global health and public order. We recommend that countries bolster their PHE responses by investing in health technology assessment (HTA), defined as a systematic process of gathering pertinent information on and evaluating health technologies from a medical, economic, social and ethical standpoint. We present examples of how HTA organizations in low- and middle-income countries have adapted to supporting PHE-related decisions during COVID-19 and describe the ways HTA can help the response to a PHE. In turn, we advocate for HTA capacity to be further developed globally and for increased institutional acceptance of these methods as a building block for preparedness and response to future PHEs. Finally, the long-term potential of HTA in strengthening health systems and embedding confidence and transparency into scientific policy should be recognized

    Examination of psychological risk factors for chronic pain following cardiac surgery: protocol for a prospective observational study

    Get PDF
    © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. INTRODUCTION: Approximately 400 000 Americans and 36 000 Canadians undergo cardiac surgery annually, and up to 56% will develop chronic postsurgical pain (CPSP). The primary aim of this study is to explore the association of pain-related beliefs and gender-based pain expectations on the development of CPSP. Secondary goals are to: (A) explore risk factors for poor functional status and patient-level cost of illness from a societal perspective up to 12 months following cardiac surgery; and (B) determine the impact of CPSP on quality-adjusted life years (QALYs) borne by cardiac surgery, in addition to the incremental cost for one additional QALY gained, among those who develop CPSP compared with those who do not. METHODS AND ANALYSES: In this prospective cohort study, 1250 adults undergoing cardiac surgery, including coronary artery bypass grafting and open-heart procedures, will be recruited over a 3-year period. Putative risk factors for CPSP will be captured prior to surgery, at postoperative day 3 (in hospital) and day 30 (at home). Outcome data will be collected via telephone interview at 6-month and 12-month follow-up. We will employ generalised estimating equations to model the primary (CPSP) and secondary outcomes (function and cost) while adjusting for prespecified model covariates. QALYs will be estimated by converting data from the Short Form-12 (version 2) to a utility score. ETHICS AND DISSEMINATION: This protocol has been approved by the responsible bodies at each of the hospital sites, and study enrolment began May 2015. We will disseminate our results through CardiacPain.Net, a web-based knowledge dissemination platform, presentation at international conferences and publications in scientific journals. TRIAL REGISTRATION NUMBER: NCT01842568

    Technology-Enabled Remote Monitoring and Self-Management - Vision for Patient Empowerment Following Cardiac and Vascular Surgery: User Testing and Randomized Controlled Trial Protocol.

    Get PDF
    BACKGROUND: Tens of thousands of cardiac and vascular surgeries (CaVS) are performed on seniors in Canada and the United Kingdom each year to improve survival, relieve disease symptoms, and improve health-related quality of life (HRQL). However, chronic postsurgical pain (CPSP), undetected or delayed detection of hemodynamic compromise, complications, and related poor functional status are major problems for substantial numbers of patients during the recovery process. To tackle this problem, we aim to refine and test the effectiveness of an eHealth-enabled service delivery intervention, TecHnology-Enabled remote monitoring and Self-MAnagemenT-VIsion for patient EmpoWerment following Cardiac and VasculaR surgery (THE SMArTVIEW, CoVeRed), which combines remote monitoring, education, and self-management training to optimize recovery outcomes and experience of seniors undergoing CaVS in Canada and the United Kingdom. OBJECTIVE: Our objectives are to (1) refine SMArTVIEW via high-fidelity user testing and (2) examine the effectiveness of SMArTVIEW via a randomized controlled trial (RCT). METHODS: CaVS patients and clinicians will engage in two cycles of focus groups and usability testing at each site; feedback will be elicited about expectations and experience of SMArTVIEW, in context. The data will be used to refine the SMArTVIEW eHealth delivery program. Upon transfer to the surgical ward (ie, post-intensive care unit [ICU]), 256 CaVS patients will be reassessed postoperatively and randomly allocated via an interactive Web randomization system to the intervention group or usual care. The SMArTVIEW intervention will run from surgical ward day 2 until 8 weeks following surgery. Outcome assessments will occur on postoperative day 30; at week 8; and at 3, 6, 9, and 12 months. The primary outcome is worst postop pain intensity upon movement in the previous 24 hours (Brief Pain Inventory-Short Form), averaged across the previous 14 days. Secondary outcomes include a composite of postoperative complications related to hemodynamic compromise-death, myocardial infarction, and nonfatal stroke- all-cause mortality and surgical site infections, functional status (Medical Outcomes Study Short Form-12), depressive symptoms (Geriatric Depression Scale), health service utilization-related costs (health service utilization data from the Institute for Clinical Evaluative Sciences data repository), and patient-level cost of recovery (Ambulatory Home Care Record). A linear mixed model will be used to assess the effects of the intervention on the primary outcome, with an a priori contrast of weekly average worst pain intensity upon movement to evaluate the primary endpoint of pain at 8 weeks postoperation. We will also examine the incremental cost of the intervention compared to usual care using a regression model to estimate the difference in expected health care costs between groups. RESULTS: Study start-up is underway and usability testing is scheduled to begin in the fall of 2016. CONCLUSIONS: Given our experience, dedicated industry partners, and related RCT infrastructure, we are confident we can make a lasting contribution to improving the care of seniors who undergo CaVS

    Disease Control Priorities Third Edition: Time to put a theory of change into practice; Comment on "Disease Control Priorities Third Edition is published: A theory of change is needed for translating evidence to health policy"

    No full text
    The Disease Control Priorities program (DCP) has pioneered the use of economic evidence in health. The theory of change (ToC) put forward by Norheim is a further welcome and necessary step towards translating DCP evidence into better priority setting in low- and middle-income countries (LMICs). We also agree that institutionalising evidence for informed priority-setting processes is crucial. Unfortunately, there have been missed opportunities for the DCP program to challenge ill-judged global norms about opportunity costs and too little respect has been shown for the wider set of local circumstances that may enable, or disable, the productive application of the DCP evidence base. We suggest that the best way forward for the global health community is a new platform that integrates the many existing development initiatives and that is driven by countries’ asks
    corecore